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Abstract— As drones become increasingly ubiquitous, they
will require the ability to detect airborne objects in order to
achieve full autonomy in the wild. In recent years, labeled
datasets for drone detection have emerged, and have been used
to train object detection models to solve this problem. However,
collecting such datasets is unduly expensive, and typically each
dataset is limited to a single location. The advent of larger and
deeper neural networks also necessitates scaling up training
datasets. We propose to train drone detectors utilizing synthetic
data which reflects a diverse variety of situations where drones
might potentially be utilized. We develop and test multiple
strategies for generating synthetic data using a pre-trained dif-
fusion model: utilizing guidance from textual prompts, targeted
to a specific dataset and image based guidance using exemplar
background images. These methods scale up well with larger
amount of unlabeled image data available on the web. Using our
synthetic data for training, we match or exceed state of the art
results on EPFL Drones and NPS Drone detection benchmarks
by up to 6% and for the first time demonstrate generalization
across datasets from different geographical locations.

I. INTRODUCTION

Drones are increasingly seeing a variety of real world
deployments for a diverse set of applications such as agri-
culture, delivery, defense, and disaster relief. Existing drones
have varying levels of autonomy ranging from fully manual
control by remote operator(s) to fully autonomous control.
As deployments of drones continue, increasing crowding of
the skies, particularly in dense urban contexts, is increasingly
becoming an important challenge to deal with in order to
achieve full autonomy. Drones need to detect and avoid other
drones and other airborne objects to successfully complete
their flights. The efficacy of deep learning based detection
models for this task has previously been successfully demon-
strated in the literature. These methods typically use labeled
drone datasets such as EPFL Drones and NPS Drones to train
their models. While these models achieve strong performance
on the benchmarks, this falls short of demonstrating success
that could carry over to the real world since these benchmark
datasets are limited in terms of location, conditions, and types
of drones used.

In parallel, there have been massive strides in the compute
power available to edge devices [1], [2] such as drones.
This permits the deployment of bigger and more accurate
models for the task of detection. But bigger models require
more data for training. However, simply scaling up labeled
drone detection datasets is not practical because of the
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logistics and cost involved. In other domains requiring visual
perception, self-supervised and weakly supervised learning
using massive amounts of unlabelled online data have been
utilized to great success. However, these methods are not
directly applicable for recognizing objects like drones which
are rare in natural images. The goal of this work is to
overcome this limitation and develop a method for training
drone detectors which can benefit from the large and growing
corpus of online visual data.

We propose a simple fix for this problem: a small dataset
of the object of interest (drones) along with a large number of
unlabelled background images can be combined using simple
copy-paste operation and data augmentations to generate
a massive amount of synthetic detection data. This data
has the ”ground-truth” detection labels available for free
by construction. The availability of this data allows us to
train larger detection models without overfitting, while also
resulting in better generalization to scenarios not present in
existing labelled datasets.

While web image and video data is remarkably diverse,
in certain applications, it is desirable to generate synthetic
data in a controlled fashion, with guidance provided in some
form, such as a description or reference images. We utilize
pre-trained latent diffusion models to generate synthetic
background images guided by reference samples from an
existing dataset. These synthetic background images can then
be used for improving the performance of detection models
in a transfer learning setting. We carry out a comparative
study of different forms of guidance for diffusion models
to analyze the effectiveness of each form of guidance (text,
reference images etc) for generating synthetic data.

Appropriate benchmarks and evaluation protocols that
closely match real world conditions are a pre-requisite for
measuring progress. We build upon existing benchmarks and
propose evaluating generalization of detection models across
datasets collected in different parts of the world.

The contributions of our work can be briefly summarized
as follows:

• Novel method for generating and using synthetic data
to train drone detection models, exceeding state of the
art performance

• Exploration of the effectiveness of latent diffusion mod-
els to generate synthetic data guided by existing drone
detection datasets

• Comparative study of the effectiveness of different
forms of guidance for diffusion models, i.e. text guid-
ance, image guidance etc.



Fig. 1. Sample Training Images from (a) FL-Drones and Synthetic images generated using pre-trained Latent Diffusion models using (b) random textual
prompting (c) Targeted Textual Prompts generated to describe FL-Drones (d) Textual Prompts describing aerial images (not specific to a dataset) and (e)
Using image based guidance from FL-Drones. Textual guidance increases diversity, while image-based guidance improves similarity to target dataset.

Fig. 2. Closeup of drones in synthetic images. A wide variety of drones
are used, which is not possible in existing labelled datasets.

II. RELEVANT WORK

Drone Detection: Prior work on drone detection from air-
borne cameras have utilized two major labelled datasets: FL
Drone [3], NPS [4]. Dogfight [5] proposed a new improved
set of annotations for these datasets. Specialized drone detec-
tion methods such as Li et. al. [6] utilizing customized neural
networks have been proposed. However, with the increasing
efficiency of standardized object detection methods such as
YOLO, and the increase in the computational capacity of
edge nodes such as Nvidia ORIN, such architectures are not
necessary to achieve real time performance.
Efficient Object Detection: YOLOv1 [7] introduced the first
ever realtime object detector, which was further improved
in YOLOv3 [8] and YOLOv5 [9]. YOLOv5 achieves state

of the art performance on standard object detection bench-
marks such as MS-COCO, while achieving realtime perfor-
mance. EfficientDet [10] modified standard object detectors
with ideas such as Bi-directional Feature Pyramid Network
and Compound Scaling to achieve a strong performance-
efficiency tradeoff.
Diffusion Models: The earliest deep diffusion models were
introduced by Sohl-Dickstein et. al. [11] in 2015. Since
then hundreds of works have utilized diffusion models for
generating various kinds of high dimensional data. We refer
the interested reader to survey [12] of the literature for a
complete treatment of the topic, while we discuss a handful
of papers most relevant for our work.

Denoising Diffusion Probabilistic Models (DDPMs) [13]
slowly corrupt the training data using Gaussian noise and
train a denoiser to recover the original data from the cor-
rupted version. A multi-step Markovian noise addition and
denoising process allows data to be generated from a ran-
domly initialized noise vector. Dhariwal et. al.[14] demon-
strates that DDPMs can be significantly improved through
guidance from a pre-trained classifier. Ho et. al [15] proposes
training a conditional and unconditional diffusion model
simultaneously in order to eliminate classifier guidance.
Latent diffusion [16] significantly increases the efficiency
and scale of generative diffusion by carrying out the diffusion
process in latent space. stable-diffusion [17] is a state
of the art latent diffusion model trained using web scale data
and forms the backbone of our method.

III. METHOD

This section provides an overview of our augmentation
based and diffusion based processes for generating synthetic
data. We also describe the datasets we used and how we
trained and tested our models. We utilize the YOLOv5 family



of models for our experiments, for two key reasons: YOLO
models provide high detection accuracy with low computa-
tional overhead, which makes them suitable for deployment
on edge devices like drones. Secondly, the YOLO family of
models includes models at 5 different scales, which provides
a useful setting to study the impact of our technique on
models of different capacities.

We source two sets of images: First, images of drones
with no background. The process of selecting these images
involved manual review of about 5 seconds per image. We
had a total of 315 drone images, 292 of which were used
for training, and 23 were set aside for validation. This split
was performed randomly. To generate drone augmentations
we rotated the drone to 5 random angles between -15 and
15 degrees about its center and flipped each drone as well.
We then cropped out any borders, this allows us to generate
tight bounding boxes around the drones. Finally, we apply a
5x5 box blur to 30 percent of the drones randomly.

We sourced 119 images from aerial videos shot with
drones, 5,000 ADE images from [18] selected by [19], and
6471 VisDrone images from [20] to use as our background
images. We resize our background image to be one of the
resolutions of the FL or NPS datasets based on which dataset
we are targeting. For each background, we randomly select
between 0 and 4 drones to be placed on the image. Each
drone is resized to fit in the bounds of the expected drone
size for a target dataset.

We train on both the synthetic and real target dataset
together. We typically (unless otherwise indicated) train for
125 epochs across yolov5n/s/m/l/x. This gives us a wider
spread of results to compare against other synthetic data
generation techniques we have tried.

A. Generating synthetic data using image-guided diffusion

While synthetic images generated using web data have
a lot of diversity and help improve and stabilize training,
in certain scenarios it is desirable to obtain synthetic data
that’s similar to an existing dataset in order to improve
performance. For this purpose we adapt a large pre-trained
latent diffusion model, stable-diffusion-v1-4. We provide
guidance to the standard Image to Image pipeline using
conditioning on FL-Drones images, along with a patch based
Maximum Mean Discrepancy (MMD) Loss between the
generated image and FL-Drones images. Prior works in
Generative Adversarial Networks have utilized the MMD
loss in order to guide networks to match the moments of
the distribution of the generated data to the original data.
MMD Loss matches first and all higher order moments of
the source data and the target. The encoder takes in an
input image to generate a latent representation, which is then
corrupted through the diffusion process. Then a denoising U-
Net network with cross-attention is applied T times to the
corrupted latent to recover a reconstruction of the original.
The guidance strength of the diffusion process can be varied
to control the diversity of the generated images. The effects
of varying guidance strength is illustrated in Figure 3.

We generated 3640 image-guided background images us-
ing diffusion. Here we took 728 images from the FL dataset
which have no drones in them, and use stable diffusion with
the prompt ’high-resolution grayscale outdoor photograph’
and a guidance strength of 0.5, 0.6, 0.7, 0.8, and 0.9 to
generate additional background images. The advantage of
using diffusion-generated background images is that they are
much closer to the real images found in the FL dataset.

In Figure 1 we can see some sample synthetic images
as well as real images from the FL and NPS datasets. In
Figure 2 we can see what some of the drones look like.
In both images, the drones are larger than they are in our
synthetic datasets and are outlined in red to make it easier
to see what these datasets could look like. The advantage
of diffusion images is evident here, as their resolution and
quality are much closer typically to the original FL images
than the web images we sourced. Fig 3 shows that the
diffusion generated backgrounds look quite similar to the
original FL images.

B. Generating synthetic data using text-guided diffusion

Text guided diffusion with pre-trained stable diffusion
models is methodically straightforward: a text prompt, num-
ber of iterations and guidance strength are the primary
inputs. We generate three different datasets using text based
prompting to fit three types of scenarios. First, we generate
a dataset using random prompts from Google Conceptual
Captions-12 million (CC-12) dataset [21]. These prompts are
scraped from alt-text of web images and describe a wide
array of scenes. This Synthetic-Random Prompts (Syn-RP)
datasets has the maximumn diversity but minimum similarity
with our benchmark datasets. Secondly, we sample prompts
containing the words “aerial” or “sky” from CC-12. These
prompts generate images (Syn-Aerial) which resemble the
typical view observed through onboard camera on a drone,
however there’s no specific targeting towards the locations
used in the benchmark dataset. Finally, we generate prompts
from our benchmark datasets using BLIP-2 [22], a state of
the art image captioning model. These datasets (Syn-FLP and
Syn-NPSP) share semantic similarity with the benchmarks,
however they don’t necessarily share any visual similarity
unlike the image-guided models.

C. Datasets

We used the FL drone dataset introduced by Rozantsev
et. al. [3]. Additionally, we used the NPS drone dataset
introduced by Li et. al.[4], with updated annotations for
both datasets from Ashraf et. al.[5]. The FL drone dataset
consists of 14 greyscale videos. The NPS drone dataset
has 50 RGB videos. The video resolutions as well as the
minimum, maximum, and average drone resolutions are
shown in Table I.

For the FL drone dataset we used two dataset splits. The
first one is proposed by us, we refer to this split as the FL-
Sequence split. Here we used all the frames in videos 1, 11,
12, 19, 46, 47, 53, and 56 for training, and all the frames
in videos 18, 29, 37, 48, 49, and 55 for testing. The second



(a) FL-Drone Samples (b) Generated Samples with drones added: Strong → Weak Guidance 

Fig. 3. (a) Sample background image without drones from FL Drone dataset (b) Three variations generated using image-guided diffusion, with progressively
weaker guidance strength. The generated images look natural, with varied details, e.g. grass → crops. Drones have been added to the generated images.

TABLE I
DETAILS OF EXISTING DATASETS

FL NPS
# Videos 14 50
Resolutions 640×480, 752×480 1920×1080,1280×760
Drone Dimensions

Min 9×9 10 × 8
Max 259×197 65 × 21

Mean 25.5×16.4 16.2×11.6
Other Attributes

Color Greyscale RGB
Locations Indoor + Outdoor Outdoor only

dataset split is the one used in [5], we call this split the
FL-Temporal split. Here only every 4th frame is used. The
first half of every video is used for training, and the second
half of every video is used for testing. For the NPS drone
dataset, we only use one split which is used by [5]. The first
40 videos are used for training, and the last 10 videos are
used for testing.

IV. RESULTS

This section provides an overview of of selected results
from our experiments. Our metric for performance is Average
Precision @ IoU threshold of 0.5 (henceforth referred to as
AP50) and the majority of the experimentation was done
with the FL drone dataset, as it was faster to train.

A. Synthetic Data Improves Detection Performance

We apply our optimal synthetic generation strategy to the
FL-Temporal dataset split. We tried training over a range of
epochs, Table II has the average and standard deviation for
training across the range of epochs for the FL and the FL +
synthetic data.

As Table II shows, we have between a 3.3% and 6.5%
improvement when we train with synthetic and real data over
only real data on average. Synthetic data also reduces run-
to-run training variance of the results. Without the synthetic

data, due to the smaller size of the FL-Drones dataset, the
larger models overfit. As we scale up the models from
YOLOv-Nano to XL, the improvement in performance due
to synthetic data gets bigger.

TABLE II
EFFECT OF SYNTHETIC DATA ON DETECTION PERFORMANCE

SYNTHETIC DATA IMPROVES THE MEAN RESULT WHILE ALSO

REDUCING VARIANCE ACROSS DIFFERENT TRAINING RUNS

Training Data
FL FL + Synthetic Data

Model AP50 (in %) (mean ± std deviation)
YOLOv5-Nano 65.8 ± 1.0 68.2 ± 0.6
YOLOv5-Small 67.7 ± 1.0 70.0 ± 0.8

YOLOv5-Medium 68.7 ± 0.7 71.3 ± 0.7
YOLOv5-Large 68.1 ± 2.3 72.7 ± 1.2

YOLOv5-XL 66.9 ± 4.7 73.4 ± 0.1

B. Effectiveness of different types of diffusion guidance

C. Applying Synthetic Data to NPS Drones

After determining the best means to generate synthetic
data and train drone detection models for the FL-Drones
dataset, we apply these ideas on a new dataset, the NPS
drone dataset.

After building our initial model, we fine tune it for 10
epochs on real NPS data, and show that it boosts performance
in Table V. The reason we chose yolov5x6 over yolov5x is
because the resolution of the NPS dataset is much larger
than the FL dataset, and yolov5x6 is better suited for
large resolution images. The performance gain from using
synthetic data on the NPS dataset is 1.3%.

D. Synthetic Data Helps Generalization Across Datasets

Here we compare how well we can generalize and detect
drones across datasets.

When we finetune a strong FL synthetic data model for 10
epochs with 10% of the NPS training data and the synthetic
data intended for NPS, we achieve a score of 93.4 on the



TABLE III

Data Used FL
Original Dataset +

Aeriel Prompts 76.4±0.7

Original Dataset +
Aeriel Prompts +

BLIP Generated Prompts
76.5±0.3

Original Dataset +
Aeriel Prompts +
Random Prompts

75.6±0.6

Original Dataset +
Random Prompts 71.4

Original Dataset 72.5

TABLE IV
COMPARING DIFFERENT TYPES OF TEXT PROMPTS

Training Data FL NPS
Original Dataset 72.5

Original +
Syn-Random 71.4

Original +
Syn-Aerial 76.4 ± 0.7 93.0 ± 0.1

Original +
Syn-Aerial +
Syn-Targeted

76.5 ± 0.3 93.0 ± 0.2

NPS dataset. Additionally when we finetune for 30 epochs
a strong NPS + synthetic data model with 10% of the FL
training data and the synthetic data intended for FL, we
achieve a score of 58.0 on the FL dataset.

This demonstrates that the synthetic data can help create
a robust model which can be cheaply pivoted to have rea-
sonable performance on another dataset, with just a fraction
of the training data needed to typically achieve this result.

E. Comparing to State of the Art

We compare our results with 3 state of the art methods
and a simple YOLOv5 baseline. On FL-Drones we provide
results on both the previously used FL-Temporal split and our
new FL-Sequence split. The FL-Sequence split is a much
harder setting since the test and train frames come from
different videos of the dataset, whereas in the FL-Temporal
split each video is split in half, with the first half used for
training.

On the proposed FL-Sequence split our best result (in

TABLE V
SYNTHETIC DATA FOR NPS-DRONES

Training Data
Model NPS + Synthetic + Finetune on NPS
YOLOv5x6 93.7 94.5 94.9

TABLE VI
MODELS TRAINED WITH SYNTHETIC DATA

GENERALIZE ACROSS DIVERSE DATASETS

Training Data
NPS +

Synthetic
+ Finetuned
(10% FL)

FL +
Synthetic

+ Finetuned
(10% NPS)

FL 4.64 58.0 73.8
NPS 94.5 27.6 93.4

AP50) is 68.7, which is a significant improvement (15%)
over Mask R-CNN and YOLOv5 baseline trained without
synthetic data.

The current SOTA for the FL-Temporal split and NPS is
held by Dogfight [5]. As shown by Table VII, we beat SOTA
by 4.3% for the FL dataset and 6.6% for the NPS dataset.

TABLE VII
COMPARISON WITH STATE OF THE ART

RESULTS ARE AVERAGE PRECISION AT IOU THRESHOLD OF 0.5
5.1% GAIN ON FL-DRONES AND 5.9% GAIN ON NPS-DRONES

Data
Model FL-Sequence FL-Temporal NPS

DogFight [5] 72.0 89.0
Mask-RCNN [23] 44.4 68.0 89.0

MEGA [24] 65.0 83.0
YOLOv5 [9] 53.4 71.2 93.7

Ours 68.7 77.1 94.9

Fig. 4. Performance of our models on FL-Drones. We are able to achieve
real time performance and outperform Dogfight and Mask R-CNN.

F. Performance

In order for the drone to successfully avoid collisions
with other drones in airborne scenarios, it is important for
inference time to be fast. Drones can only carry hardware
with a limited amount of computational power. In Figure 4
we graph the frames per second (fps) vs the performance of
our models on a single V100 GPU. We can see that for our
best model which significantly beats SOTA performance, the
fps is approximately 25 and 75 frames per second for NPS
and FL respectively. But for slightly lower performance (3%
lower for NPS and 6% lower for FL), we are able to achieve
approximately 240 fps for NPS and 470 fps for FL. As
present generation embedded compute modules like Nvidia
Jetson AGX ORIN increasingly match the performance of
older datacenter GPUs like the V100, these numbers are a
good estimate of the performance in real-world conditions.

V. CONCLUSION

In this work we develop a novel method for gener-
ating synthetic data by guiding latent diffusion. Our ex-
tensive experiments demonstrate that the use of synthetic
data significantly improves drone detection on two different



datasets. Synthetic data also helps improve hard generaliz-
ability across datasets collected in different continents, while
lending additional stability to training.
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